300元3小时服务不限次数-400块钱3小时无限次快餐,500一晚同城约茶,风楼阁交友平台

千锋教育-做有情怀、有良心、有品质的职业教育机构

400-811-9990
手机站
千锋教育

千锋学习站 | 随时随地免费学

千锋教育

扫一扫进入千锋手机站

领取全套视频
千锋教育

关注千锋学习站小程序
随时随地免费学习课程

上海
  • 北京
  • 郑州
  • 武汉
  • 成都
  • 西安
  • 沈阳
  • 广州
  • 南京
  • 深圳
  • 大连
  • 青岛
  • 杭州
  • 重庆
当前位置:成都千锋IT培训  >  技术干货  >  散列表为什么可以在O(1)时间复杂度内查找散列值?

散列表为什么可以在O(1)时间复杂度内查找散列值?

来源:千锋教育
发布人:xqq
时间: 2023-10-14 16:20:29

一、散列表为什么可以在O(1)时间复杂度内查找散列值

因为哈希函数的功能就是完成键到哈希值的映射,映射到的哈希值就是一个数字,被用来当作数组的下标,这个元素就是存储在数组的这个下标内。散列表用的其实是数组随机存取的特性。数组随机存取的复杂度就是O(1),所以散列表的查找效率就是O(1)。

什么是散列表

散列表(hash table),我们平时叫它哈希表或者Hash 表,你肯定经常听到它。

散列表是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。

由定义我们可以知道,散列表用的是数组支持下标访问数据的特性,所以散列表是数组的一种扩展,有数组演化而来。

延伸阅读:

二、开放寻址法

开发寻址法就是但我们遇到了哈希冲突,我们就重新探索一个空闲位置,然后插入。

我们探索空闲位置有以下几种方法。

线性探测

当我们往散列表中插入数据时,经过散列函数发现位置已经被占用了,我们就从当前位置开始,依次往后查找,直到找到空闲位置为止。

比如一个散列表的大小为 10,一个数据经过散列函数之后,到了下标为 8 的位置,但是发现这个位置已经有数据了,那么就依次往后遍历,如果到了尾部,还是没有找到空闲位置,那么就再从头开始找,直到找到空闲位置。

查找元素和插入类似,通过散列函数计算出哈希值,然后找到对应位置数据,然后与查找的元素进行比较,如果相等,则它就是我们要找的数据,如果不相等,就依次往后遍历,如果遍历到空闲位置还没找到,就说明元素不在散列表中。

但是删除的时候稍微有点特别,我们不能直接删除数据,因为我们在查找的时候,如果找到一个空闲位置,就说元素不在散列表中,如果我们直接删除了之后可能会导致某些元素找不到。所以我们将要删除的元素,标记为 deleted,当我们查找的时候,遇到标记为 deleted 的元素,继续往下遍历。

线性探测法存在很大的问题,当散列表中插入的元素越来越多时,发生散列冲突的概率就越来越大,空闲的位置就越来越少,先行探索的时间就会越来越长,甚至在极端情况下,我们需要遍历整个散列表。

二次探索

二次探索,和线性探索原理一样,先行探索每次的步长为 1 ,探索的下标依次为 hash(key)+0,hash(key)+1,hash(key)+2…,二次探索每次的步长变为原来的二次方,所以每次探索的下边为 hash(key)+0,hash(key)+1^2,hash(key)+2^2。

双重散列

原来我们使用一个散列函数,双重散列,我们使用多个散列函数,我们先用名列前茅个散列函数,如果计算得到的位置已经被占用,就使用第二个散列函数,以此类推,直到找到空闲时的位置。

不管用哪个探索方法,当空闲位置变少的时候,散列冲突的概率会变得很高。为了尽可能保证散列表的操作效率,一般情况下,我们会尽可能保证散列表中有一定比例的空闲槽位。我们用装载因子来表示空位的多少。 装载因子 = 填入散列表的元素个数 / 散列表的长度

声明:本站稿件版权均属千锋教育所有,未经许可不得擅自转载。

猜你喜欢LIKE

为什么 CIS Benchmarks 非常重要?

2023-10-14

为什么应使用 Docker?

2023-10-14

负载均衡有哪些优势?

2023-10-14

最新文章NEW

使用 XML 有哪些好处??

2023-10-14

python 在cmd 下执行脚本语句和在python shell 中的>>>下执行语句有什么区别?

2023-10-14

Fortran语言中read*,和read(*,*)的区别?

2023-10-14

相关推荐HOT

更多>>

快速通道 更多>>

最新开班信息 更多>>

网友热搜 更多>>